Cyclophosphamide interferes with oogenesis and spermatogenesis. It may cause sterility in both sexes. Development of sterility appears to depend on the dose of cyclophosphamide, duration of therapy, and the state of gonadal function at the time of treatment. In premenopausal women, sterility has been reported following doses of cyclophosphamide as low as 1.5 g/m2 to as high as 26 g/m2, usually as a portion of combination chemotherapy regimens.

Neutropenia of less than 2000 cells/mm3 develops commonly in patients treated with cyclophosphamide. Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia.

The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction. Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction. Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia.

In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction. Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.

Leukopenia usually begins in 7 to 10 days after cessation of therapy. Recovery from leukopenia may be delayed in patients who have or who develop viral, bacterial, fungal, protozoan, or helminth infections if there is no marked granulocytopenia. In a few instances with high doses of cyclophosphamide, marrow suppression may occur at an accelerated rate, producing profound and irreversible marrow depression. The degree of neutropenia is particularly important in patients with renal impairment, because the degree of neutropenia is accentuated by renal dysfunction.
CYTOXAN® Tablets (cyclophosphamide tablets, USP), 25 mg, and CYTOXAN® Tablets, 50 mg, are white tablets with blue flecks containing 25 mg and 50 mg cyclophosphamide (anhydrous), respectively.

CYTOXAN® Tablets (cyclophosphamide tablets, USP).

<table>
<thead>
<tr>
<th>NDC</th>
<th>Quantity</th>
<th>Bottles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0015-0503-01</td>
<td>50 mg</td>
<td>bottles of 100</td>
</tr>
<tr>
<td>0015-0503-02</td>
<td>50 mg</td>
<td>bottles of 1000</td>
</tr>
<tr>
<td>0015-0504-01</td>
<td>25 mg</td>
<td>bottles of 100</td>
</tr>
</tbody>
</table>

Storage at or below 77°F (25°C) is recommended; this product will withstand brief exposure to temperatures up to 86°F (30°C) but should be protected from temperatures above 86°F (30°C).

Procedures for proper handling and disposal of anticancer drugs should be considered. Several guidelines on this subject have been published. There is no general agreement that all of the procedures recommended in the guidelines are necessary or appropriate.

REFERENCES


3. National Study Commission on Cytotoxic Exposure–Recommendations for Handling Cytotoxic Agents. Available from Louis P. Jeffrey, ScD, Chairman, National Study Commission on Cytotoxic Exposure, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, Massachusetts 02115.


Mead Johnson
Oncology Products
A Bristol-Myers Squibb Company
Princeton, NJ 08543
U.S.A.

H4-B001-11-00 05390IM-09 107996A2
Revised July 2000